廖芳芳

  • 作者:
  • 来源:
  • 时间:2025-03-26

 

 

 

 

 

 

 

 

姓名:

廖芳芳

职称:

教授

单位电话:

0735-2653203

电子邮箱:

liaofangfang1981@126.com                                                                                                                                                                                     

办公室:

博学楼205室

 

个人简介:

廖芳芳,1981年出生,族,湖南郴州人中共党员博士研究生教授。主要研究领域为非线性泛函分析湖南省普通高校科技创新团队非线性泛函理论应用驱动成果转化科技创新团队带头人,谷物加工产线智能设计与运行管控湖南省工程研究中心主任,国家一流专业数学与应用数学专业方向带头人、国家技术转移中级技术经纪人,湖南省数学学会常务理事,湖南省一流课程负责人,湖南省芙蓉百岗明星,湖南省青年骨干教师,湖南省大学生数学竞赛优秀指导教师,湖南省本科高校实验室安全检查专家,郴州市应用数学成果转化技术研发中心负责人,郴州市最美科技工作者。

 

教学情况:

主讲本科生课程常微分方程数学分析高等数学

主编教材(选填)一元函数微积分天津科学技术出版社2020。                                                                                                                            

 

主持科研项目:

1.国家自然科学基金,变分法在离散动力系统中的应用,12242112,国家自然科学基金委员会,主持,结题;

2.国家自然科学基金,薛定谔耦合系统驻波解的存在性及相关问题,11701487,国家自然科学基金委员会,主持,结题;

3.国家自然科学基金,全空间上几类非线性椭圆动力系统半经典解的存在性,11626202,国家自然科学基金委员会,主持,结题;

4.湖南省自然科学基金面上项目,几类非自治的非线性Dirac-Posson系统解的形态研究,2022JJ30550,湖南省科技厅,主持,结题;

5.湖南省教育厅重点项目,几类非线性Choquard方程解的性态研究,22A0588,湖南省教育厅,主持,结题;

6.湖南省教育厅教改项目,后MOOC时代下O2O高校数学课程教学模式的构建与应用研究,湘教通[2020]232号,序号938,湖南省教育厅,主持,结题;

7.湖南省自然科学基金项目,带扰动项的非线性变分问题半经典解的存在性研究,2015JJ691,湖南省科技厅,主持,结题

8.湖南省教育厅优秀青年项目,全空间上非线性椭圆系统解的存在性研究,2015B223,湖南省教育厅,主持,结题;

9.横向项目:美的冰箱混流智能排产算法优化,广东工业大学,2024年,主持,在研;

10.开放课题:非局部项狄拉克系统解的存在性研究,湘潭大学,2021年,主持,结题。

 

 

 

主要代表性论文:

On multiplicity of solutions to nonlinearDirac equation with local super-quadratic growth,Advances in Nonlinear Analysis 2025; 14: 20240065.Sequences o

f small energy solutions for subquadratic Hamiltonianelliptic system,Applied Mathematics Letters,158 (2024) 109260.

Mountain-pass type solution for planar Schrödinger–Poisson systems with critical exponential growth,Applied Mathematics Letters, 2024, 148: 108865.

Non-constant periodic solutions of the Ricker model with periodic parameters, Journal ofDifferenceEquations and Application, 2024, 1-15.

Ground State Solutions of Nehari-Pohozaev Type for Schrödinger–Poisson–Slater Equation with Zero Mass and Critical Growth. The Journal of Geometric Analysis, 2024, 34, 221.

Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with zero mass,Journal of Mathematical Analysis and Applications, 2024, 533, 128022.

Periodic solutions and stability of a discrete mosquito population model with periodic parameters, Discrete and Continuous Dynamical Systems-Series B

, 2024, 29, 4481-4491.

On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity, Boundary Value Problems, 2023,2023:99.

Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential, Advances in Nonlinear Analysis,2023,12: 20220319.

On nonlinear fractional Schrödinger equations with indefinite and Hardy potentials, Asymptotic Analysis, 2023,132: 305–330

Existence and Nonexistence of Solutions for Schrödinger–Poisson Problems, The Journal of Geometric Analysis, 2023,33:56.

Ground States for Singularly Perturbed Planar Choquard Equation with Critical Exponential Growth, 2022, 5, 247-271.

Ground state solution for a class of Choquard equation with indefinite periodic potential,Applied Mathematics Letters, 2022,132: 108205.

New asymptotically quadratic conditions for Hamiltonian elliptic systems,Advances in Nonlinear Analysis,2022,11: 469-481.

On the planar Schrödinger-Poisson system with zero mass potential,MathematicalMethods in the Applied Sciences,2022,45:2820-2830.

Ground state solutions for Schrödinger–Poisson system with critical exponential growth in R2,Applied Mathematics Letters,2021,120:107340.

Multiplicity of solutions for asymptotically quadratic Dirac–Poisson system with non-periodic potential,Applied Mathematics Letters, 2021,120:107304.

Homoclinic orbits for first-order Hamiltonian system with local super-quadratic growth condition,Complex Variables and Elliptic Equations,2021,67(4), 988–1011.

互联网时代背景下O2O高校数学课程教学模式研究——以《常微分方程》为例, 数字通信世界, 2021, (11): 231-233.

Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation, Nonlinear Analysis, 2020,196(2020):111831.

Nontrivial solutions for a nonlinear Schrödinger equation with nonsymmetric coefficients, Nonlinear Analysis, 2020,195(2020) :111755.