- 789
廖芳芳
- 作者:
- 来源:
- 时间:2025-03-26
|
姓名: | 廖芳芳 |
职称: | 教授 |
单位电话: | 0735-2653203 |
电子邮箱: | liaofangfang1981@126.com |
办公室: | 博学楼205室 |
个人简介: |
廖芳芳,女,1981年出生,汉族,湖南郴州人,中共党员,博士研究生,教授。主要研究领域为非线性泛函分析,是湖南省普通高校科技创新团队“非线性泛函理论应用驱动成果转化”科技创新团队带头人,“谷物加工产线智能设计与运行管控”湖南省工程研究中心主任,国家一流专业“数学与应用数学”专业方向带头人、国家技术转移中级技术经纪人,湖南省数学学会常务理事,湖南省一流课程负责人,湖南省芙蓉百岗明星,湖南省青年骨干教师,湖南省大学生数学竞赛优秀指导教师,湖南省本科高校实验室安全检查专家,郴州市应用数学成果转化技术研发中心负责人,郴州市最美科技工作者。 |
教学情况: |
主讲本科生课程:《常微分方程》《数学分析》《高等数学》。 主编教材(选填):《一元函数微积分》,天津科学技术出版社,2020。 |
主持科研项目: |
1.国家自然科学基金,变分法在离散动力系统中的应用,12242112,国家自然科学基金委员会,主持,结题; 2.国家自然科学基金,薛定谔耦合系统驻波解的存在性及相关问题,11701487,国家自然科学基金委员会,主持,结题; 3.国家自然科学基金,全空间上几类非线性椭圆动力系统半经典解的存在性,11626202,国家自然科学基金委员会,主持,结题; 4.湖南省自然科学基金面上项目,几类非自治的非线性Dirac-Posson系统解的形态研究,2022JJ30550,湖南省科技厅,主持,结题; 5.湖南省教育厅重点项目,几类非线性Choquard方程解的性态研究,22A0588,湖南省教育厅,主持,结题; 6.湖南省教育厅教改项目,后MOOC时代下O2O高校数学课程教学模式的构建与应用研究,湘教通[2020]232号,序号938,湖南省教育厅,主持,结题; 7.湖南省自然科学基金项目,带扰动项的非线性变分问题半经典解的存在性研究,2015JJ691,湖南省科技厅,主持,结题; 8.湖南省教育厅优秀青年项目,全空间上非线性椭圆系统解的存在性研究,2015B223,湖南省教育厅,主持,结题; 9.横向项目:美的冰箱混流智能排产算法优化,广东工业大学,2024年,主持,在研; 10.开放课题:非局部项狄拉克系统解的存在性研究,湘潭大学,2021年,主持,结题。
|
主要代表性论文: |
On multiplicity of solutions to nonlinearDirac equation with local super-quadratic growth,Advances in Nonlinear Analysis 2025; 14: 20240065.Sequences o f small energy solutions for subquadratic Hamiltonianelliptic system,Applied Mathematics Letters,158 (2024) 109260. Mountain-pass type solution for planar Schrödinger–Poisson systems with critical exponential growth,Applied Mathematics Letters, 2024, 148: 108865. Non-constant periodic solutions of the Ricker model with periodic parameters, Journal ofDifferenceEquations and Application, 2024, 1-15. Ground State Solutions of Nehari-Pohozaev Type for Schrödinger–Poisson–Slater Equation with Zero Mass and Critical Growth. The Journal of Geometric Analysis, 2024, 34, 221. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with zero mass,Journal of Mathematical Analysis and Applications, 2024, 533, 128022. Periodic solutions and stability of a discrete mosquito population model with periodic parameters, Discrete and Continuous Dynamical Systems-Series B , 2024, 29, 4481-4491. On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity, Boundary Value Problems, 2023,2023:99. Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential, Advances in Nonlinear Analysis,2023,12: 20220319. On nonlinear fractional Schrödinger equations with indefinite and Hardy potentials, Asymptotic Analysis, 2023,132: 305–330 Existence and Nonexistence of Solutions for Schrödinger–Poisson Problems, The Journal of Geometric Analysis, 2023,33:56. Ground States for Singularly Perturbed Planar Choquard Equation with Critical Exponential Growth, 2022, 5, 247-271. Ground state solution for a class of Choquard equation with indefinite periodic potential,Applied Mathematics Letters, 2022,132: 108205. New asymptotically quadratic conditions for Hamiltonian elliptic systems,Advances in Nonlinear Analysis,2022,11: 469-481. On the planar Schrödinger-Poisson system with zero mass potential,MathematicalMethods in the Applied Sciences,2022,45:2820-2830. Ground state solutions for Schrödinger–Poisson system with critical exponential growth in R2,Applied Mathematics Letters,2021,120:107340. Multiplicity of solutions for asymptotically quadratic Dirac–Poisson system with non-periodic potential,Applied Mathematics Letters, 2021,120:107304. Homoclinic orbits for first-order Hamiltonian system with local super-quadratic growth condition,Complex Variables and Elliptic Equations,2021,67(4), 988–1011. 互联网时代背景下O2O高校数学课程教学模式研究——以《常微分方程》为例, 数字通信世界, 2021, (11): 231-233. Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation, Nonlinear Analysis, 2020,196(2020):111831. Nontrivial solutions for a nonlinear Schrödinger equation with nonsymmetric coefficients, Nonlinear Analysis, 2020,195(2020) :111755. |

信息公开
阳光服务
财务
教务系统
湘南易班
学校邮箱
官方微博
官方微信
实景湘南
校历